Improving independent component analysis performances by variable selection

نویسندگان

  • Frédéric Vrins
  • John Aldo Lee
  • Michel Verleysen
  • Vincent Vigneron
  • Christian Jutten
چکیده

Blind Source Separation (BSS) consists in recovering unobserved signals from observed mixtures of them. In most cases the whole set of mixtures is used for the separation, possibly after a dimension reduction by PCA. This paper aims to show that in many applications the quality of the separation can be improved by first selecting a subset of some mixtures among the available ones, possibly by an information content criterion, and performing PCA and BSS afterwards. The benefit of this procedure is shown on simulated electrocardiographic data by extracting the fetal electrocardiogram signal from mixtures recorded on the abdomen of a pregnant woman.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis

Prediction problems from spectra are largely encountered in chemometry. In addition to accurate predictions, it is often needed to extract information about which wavelengths in the spectra contribute in an effective way to the quality of the prediction. This implies to select wavelengths (or wavelength intervals), a problem associated to variable selection. In this paper, it is shown how this ...

متن کامل

Input variable selection using independent component analysis

The problem of input variable selection is well known in the task of modeling real world data. In this paper, we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches w...

متن کامل

Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data

MOTIVATION Discriminant analysis is an effective tool for the classification of experimental units into groups. Here, we consider the typical problem of classifying subjects according to phenotypes via gene expression data and propose a method that incorporates variable selection into the inferential procedure, for the identification of the important biomarkers. To achieve this goal, we build u...

متن کامل

Application of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives

Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...

متن کامل

Application of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives

Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003